Mashed Services and Business Models Enabled by Next Generation Operations Systems and Software (NGOSS)
Next Generation Operator Opportunities

Authors
Marc Cimiotti, CGI
Joachim Schonowski, Deutsche Telekom Laboratories
Table of contents

SYNOPSIS ... 3
TELECOMMUNICATION AND INTERNET EVOLUTION 3
CUSTOMER DEMAND IN A GLOBAL DIGITAL WORLD 4
WHAT MAKES THE SUCCESS OF NEW ENTRANTS IN ICT BUSINESS? 6
CONTROL POINT DEFINITION 8
CONTROL POINT CONCEPT MATCHED TO APPLE, NOKIA AND GOOGLE 9
CUSTOMER EXPECTATION VS. DEPLOYMENT SYSTEMS 11
HISTORY OF SUPPORT SYSTEMS AND NGOSS 12
NGOSS LOGIC AND LIFECYCLE 13
CONTROL POINTS WITHIN A NGOSS FRAMEWORK 16
ECOZONE TRIGGERED SERVICE ENVIRONMENT 17
MASHED SERVICES AND BUSINESS MODELS ENABLED BY NGOSS 18
CONCLUSION ... 20
Synopsis

For some years the telecommunication business has been facing a radical change. Internet introduction in conjunction with fixed and mobile broadband fuelled the entrance into the “information age”.

New entrants into the telecommunication business are acting fast in the digital marketplace, setting up new business models and services and hence reducing operator income.

By comparing successful new entrants like Google, Apple, Nokia … it is striking that they all have one or two things in common:
 • Fast service introduction in conjunction with innovative technologies
 • A control point or service control point as a strategic core

From our perspective, it is vital for an Operator to provide appropriate control points as well in order to be competitive and enable new business opportunities.

Therefore we will concentrate on these topics in order to verify if Next Generation Operations Systems and Software (NGOSS) could support the operator to reduce costs, react faster in digital markets, foster operator control – service control points and support new business models.

In combination with a lean operator approach¹, we will introduce the concept of an operator ecozone.

Telecommunication and Internet evolution

Telecommunication and Internet evolution lead to full ICT convergence. For nearly 100 years, standard communication services were restricted to analogue voice only services.

The enhancement of PSTN and the occurrence of the Internet and digital information explosion led to the so-called information age. One central aspect is the extreme bandwidth increase within the last two decades on fixed and mobile networks. In combination with the still ongoing digitalisation, the Internet fuelled and still fuels innovation at an enhanced development speed (see Figure 1).

Due to new entrants in the digital business (telecommunication and Internet) the importance of the network domain seems to shrink in conjunction with those fast-acting new service companies of the Web 2.0 era, e.g. Flickr, Skype, Twitter or ecosystem providers like Apple, Google and Nokia which are “sitting” on top of the network.

Telecommunication companies face numerous threats in terms of revenue decline, changing consumer relationships and business models, due to rapid adoption of actual Internet / mobile communication technologies and market trends like Web 2.0 by end users. With the ready availability of new communication methods, the technical possibility and user request for fixed mobile convergence classic communication will be substituted.

¹ NGOSS distilled, John P. Reilly & Martin J.Creaner, 2005, published by The Lean Cooperation
The traditional access-driven business model, based on the past monopoly of incumbent operators, in combination with some core services will no longer be sustainable in future.

![Figure 1: Brief overview on ICT business and technology development.](image)

This allowed the so-called “walled garden” (technical and business stovepipe) approach and tied the customer to the operator.

These two important aspects – the customer relationship and underlying business models - changed during the last two decades dramatically and especially with the so called Web 2.0 introduction as depicted in Figure 1.

Technical stovepipes endanger the actual business due to technological inflexibility – traditional product (service) development cycles took some months to even years. Cal Henderson, the lead developer of Flickr, recently revealed that they deploy new builds up to every half hour.²

The Flickr example shows: Today’s technology and service development go hand in hand. The introduction of VOIP technology is used as underlying technology, e.g. for Skype services. Web 2.0 services like social networks and user-generated content platforms are based on modified internet technologies with new service concepts.

Customer demand in a global digital world

The information age plus recent success and user acceptance of Web 2.0 (e.g. personal social networks) dramatically changed traditional individual and society behaviour.

As mentioned above, the technological progress enabled new service worlds (e.g. mobile data usage grew immensely with the iPhone introduction³) and initiated different, more individual, user requests and usage patterns.

This movement leads to a new customer expectations, which we logically separated in three layers (see Figure 2). The information age changed the traditional 20th century life dramatically. Society changed from a labour to a service industry. Life and work balance has changed in coincidence, people work from the office, home … anywhere. The same applies to other environments; people expect service or content super access.

In addition users expect super usage of services and content – “Buy Once Use Everywhere”; examples are device agnostic music services, e.g. accessible through the mobile phone or PC (Comes With Music4) or TV services like Slingbox available on any TV or your Mobile5.

Finally in today’s global environment, people keep contact and communicate very different than they did some years ago. Instead of physical contact, people require digital connection to their community(ies) anywhere, anytime with any device where services follow the user.

Since super interactivity should be available across all screens and integrate all kinds of content, it requires super access and super usage. In combination with the available and upcoming communication services like Instant Messaging, Email, Twitter and many others it enables the collective intelligence. Today’s user is also a content producer – "User Generated Content".

Whilst the first set of interactive services and the vision described above already exist, all three service paradigms are so far not fully available. In many cases they are

4 http://www.nokia.de/nokia/presse loft/pressemitteilungen/pressemeldungen?newsid=-18511
5 http://www.slingmedia.com/go/products
provided by different parties with different user experiences and different contractual obligations. A seamless user experience is the essential building pillar and needs to be integrated in the product lifecycle.

![Figure 3: Soft customer demands on telecommunication and Internet service worlds.](image)

Besides technical service needs, consumers require soft or emotional aspects (see Figure 3):
- Interactivity - as one central aspect of 2.0 and principal human needs
- Simplicity - required to reduce service and technology complexity
- Convenience - using intelligent service concepts, e.g. follow me services, service integration in user environments – wearables, providing a compelling user experience ...
- Time - is the new currency of modern power society.

The relevance of time and personal information will become more dominant in the future (e.g. in order not to waste time in call queues or try to reach someone fails, because of lack of presence information) and intelligent usage of available and future technology is required.

Within just two decades, business and product evolution in combination with a different and more diverse user perspective have changed the traditional telecommunication business and value chains, where new and more parties are now in place and influence, impact and revenue of the operator are being reduced.

What makes the success of new entrants in ICT business?
Comparing three dominating players of today: Apple, Google and Nokia, Figure 4 illustrates their evolution path, starting from a core business, which is continuously enriched by other services, thus forming a “control point”.

7 Marc Cimiotti, Joachim Schonowski; TMForum, Nice 2008
Apple
Apple started the business in desktop computers in 1976 and competed with IBM and Microsoft in the business and corporate computing market during the 80s. After a fall during the 80-90s, the introduction of the iMac in 98 and the iPod Apple allowed it to rise again. Most important from our perspective was the iTunes introduction in 2003 being not only quickly the market leader in online music services but also acting as a starting point for a software based ecosystem including integrated payment. Today iTunes is the access point for all Apple devices and acts from our perspective as a control point. It is accompanied by the recent introduction of the App Store on July 10, 2008.

Google
Between 1996 and 2000 Google started from an idea to a business. Within a few years, Google became the most dominant search engine (desktop market share of more than 80% and a mobile search market share of 97% worldwide in 2009) with advertisement as its core business model. Google has developed a large products and services portfolio centred on search: content (e.g. YouTube) communication (e.g. Gmail), communities (e.g. Blogger), other areas (e.g. desktop search) and technology platforms (e.g. Chrome, Android, Wave). Google has developed partnerships with all key media businesses that can secure and leverage its role in advertising, while the core service search is free! Thus Google search is the essential control point of Google, which Google tries to transfer into new areas, e.g. Android and the mobile space.

11 http://www.spiegel.de/netzwelt/web/0,1518,619398,00.html
Nokia:
From rubber to telecommunication, what is known today as Nokia was established in 1865 as a wood-pulp mill by Knut Fredrik Idestam on the banks of the Tammerkoski rapids in the town of Tampere13.

Nokia’s majority of revenue today is based on two divisions: Devices & NokiaSiemensNetworks14, where at mobile devices, the Symbian OS acts as control point.

While these are the actual cash cows, Nokia will add another sustainable revenue stream with their service world and a shift away from a pure telephony to the Internet business15. Nokia underlined this ambition by purchasing lots of smaller internet companies16 and added a similar control point like Google and Apple with the introduction of the OVI store September 06, 2007.

Since these three business examples have a direct impact on the carrier business, the operator is forced to react!

Control point definition
Enablers provide core services like call control or presence to higher level services for reuse of the functionality in a more complex application scenario. Service Control Point is based on a combination of enabler(s) and or service(s). SCP makes enablers accessible and mash it with a service. A service control point in the simplest sense provides control mechanisms to make these enablers available to specific internal or external users. The control point intelligently combines enablers and even other service control points and is capable of exposing mashed services composed of enablers and services on its outside edge. Depending on the context, a CP could be a SCP or consist of different service control points.

13 http://en.wikipedia.org/wiki/Nokia
14 http://www.nokia.com/A4126495
16 http://en.wikipedia.org/wiki/Nokia
Both CPs and SCPs offer the opportunity to foster services in an efficient way and to generate revenue, when offered to 3rd parties. They are offered via an ecozone which we explain in Figure 12.

Control point concept matched to Apple, Nokia and Google

The three companies Apple, Nokia and Google have in common that they form ecosystem silos (ES) spanning from the service to the access plane (see Figure 6).

Device, operating system and an application store based on the appropriate runtime environment delivered via the operating system are in their domain and are seen as CPs or SCPs.

In addition, Figure 6 illustrates:

- The actual CP positioning within the ESs of Apple, Nokia and Google, using a four layer logic (network, service, application and access)
- The actual positioning of the operator compared to the other three.
Apple:
The Apple OS is proprietary and so is the available service environment around iTunes and Apple store. If open standards could undermine the existing status quo, Apple blocks this, by changing their OS17. From our view, MacOS, iTunes and the Apple store form control points.

Nokia:
Even though formerly Symbian Ltd., a joint initiative of five technical focused companies, was transferred to the Symbian foundation, with the scope to move to open source18, it is at least for the time being a CP of Nokia. Starting with Club Nokia, Ovi is the new Nokia marketplace acting as a CP.

Google:
The Google kingdom consists of several CPs and SCPs. The origin is Google Search as first CP and recently added examples like GMail as SCP. Although announced as open source, the OS Android forms from our perspective the Google ecosystem now, with the intent to spread Google services and the basic advertisement business model across many screens and using the Google Marketplace as CP. Google Waves as the consequent continuation of the Web 2.0 idea is seen as another SCP.

Operator / Carrier:
From our perspective, Operators historically have a strong network focus; hence this is the dominant Operator CP. Although many options were and still are available Operators are not utilizing their potential most effectively.

17 http://www.heise.de/mobil/Naechste-iTunes-Version-womoeglich-ohne-Palm-Pre-Support--/newsticker/meldung/140602

18 http://www.symbian.org/about/index.php
Besides enablers, many untapped opportunities in terms of CP and SCP are:

- Identity and AAA (e.g. UICC)
- Network centric services, e.g. network based address book
- Service provisioning platforms, e.g. mobile application manager

They would support business and the personal situation and convenience19. Most important: they do not need necessarily to compete with the new entrants on the same ground but sell their assets to all players “up” there!

Market conclusion:
Successful players in the ICT market place have formed ecosystem silos. Carriers need to react and have many opportunities to change their situation and keep a sustainable and important role in the business logic and value chain.

In order to fulfil customer expectation, the underlying service and technology domain needs to change and to be more flexible.

A major problem is the monetization of Operator services. Today Operators focus on the concept payment for access, which is due to decreasing revenues not sustainable in the future as a sole business model. New approaches for next-generation business models are needed and need to be supported.

Operator challenges: Customer expectation vs. deployment systems
To fulfill customer expectation and react to new business entrants, the technological side will face new and exiting challenges. Rather than responding with a new “deserted island” stand-alone solution/support for every new service, a consolidated and comprehensive answer should be considered by the Operator. The Operator should consolidate existing capabilities and provide collected enablers (currently trapped at discrete points in the network) in a coordinated, reliable and efficient way. This would not only eliminate the need for functional and data redundancy (affecting also customer experience) but fertilize new business models.

As opposed to “service only” focused newcomers in the market, carriers come with a gigantic and complex IT infrastructure supporting all levels of the model, from network over access, to service billing, and up to sales. Since this bulk is slower to change as lean solutions specifically aimed at providing new services, for large parts these provisioning focused systems are kept out of ad-hoc developments.

Rather, the carriers compete with the newcomers by mimicking their approach and build similar systems next to the existing infrastructure not closely connected and therefore compete on the same level with the competition. Rather than using the vast assets they have at their disposal, they choose to compete on the same ground. In order to gain an edge over the competition and achieve sustainable and consolidated growth in the service segment, it seems worth examining how the IT infrastructure of a carrier has evolved and has to evolve in the future to cope with these challenges. NGOSS provides a powerful tool or starting point to move in that direction.

19 http://skypejournal.com/2009/06/dryburgh-what-after-skype-intent.html
History of support systems and NGOSS

The BSS (Business Support Systems) / OSS (Operation Support Systems) power is probably the biggest un-played operator trump-card and the evolution path is shown in Figure 7. We will use the NGOSS concept to explain the correlation between control points and carrier architecture in production today. NGOSS will help in two different ways to achieve this. Firstly with its terminology to provide a common understanding of which aspects of the Operator’s IT systems we are referring to, secondly by its methodology to show the appropriate ways to use IT in a way required from a business point of view.

Figure 7: High-level overview of support system evolution.

Not coincidentally the standards framework for traditional OSS and BSS today known as NGOSS evolved in a very similar pattern as shown in Figure 1. Starting in the network layer and bringing forward standardization and change herein the focus quickly began to broaden and include neighboring aspects and led to the birth of OSS and BSS concepts. Treated as separate entities, BSS and OSS systems started from opposite sides. While BSS was more of a cross-industry approach, combining customer-facing or customer near applications (e.g. customer care, billing and developed downward to the service layer from there), OSS started near the network and made their way upwards. When the focus finally started overlapping, yet another consolidation effort had to be undertaken. The problems these concepts faced around the turn of the 21st century (e.g. rapid development of Internet usage, new service concepts and new players in the service market segment), were first answered with NGN-OSS, new (green-field) OSS systems for the new NGN networks that were to be built. But recognizing that the impact extended beyond the network, this soon became shortened to Next Generation Operations Support Systems: NGOSS.20

NGOSS is a holistic approach to mirror a company’s business logic to the underlying IT systems. It couples a Business Orientated with a Service Orientated Architecture (BOA – SOA)

20 Wedge Greene - The New Telecom Ecosystem, Part 3: Start of NGOSS
As in the service space, we can already see the first glimpse of what is to come. Integrated control-points as in the iPhone or new sophisticated mashed Web-services such as Google Wave, we see the signs of changes to come in NGOSS as well.

Just recently the active involvement in the standard is no longer exclusively from the Telco or product/hardware development area, but new players from the service world have started to participate and want to have their say. Ogilvy is looking for new business models and revenue from an advertisement perspective, Amazon21 tries to integrate its service portfolio into the NGOSS compliant frameworks. However a lot of questions brought up by the new challenges cannot (yet) be answered by NGOSS. So we can expect a significant broadening of scope yet again.

Today, NGOSS is the industry-agreed business and systems framework to guide the implementation of improved business behaviour.

NGOSS logic and lifecycle

In order to understand NGOSS it is important to at least briefly describe its scope and outset. The four views shown in Figure 8 provide the focus on specific aspects in an Operator’s business.

This segmentation enables clear definition of responsibilities and needed collaboration. The business side on the left can describe requirements to support new products and services. The IT side on the right focuses on how to support these business requirements from an IT perspective. Another set of similarities becomes obvious when read from top to bottom. The upper two quadrants represent issues on the logical layer while the bottom two look at the physical side of things.

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{logical_technical_alignment.png}
\caption{Logical and technical alignment of business and technology.}
\end{figure}

21 https://www.tmforum.org/ManagementWorld2009/KeynoteSpeakers/6730/Home.html
Keeping this picture in mind, the NGOSS lifecycle diagram in Figure 9 describes how these four quadrants relate to the frameworks provided and how the lifecycle for realization of new business concepts supports their IT.

The key elements of NGOSS are:

- Application Framework (TAM) — standardized model for grouping function and data into recognizable applications or services
- Business Process Framework (eTOM) — provides logical groupings of processes for building management systems
- Information Framework (SID) — a common information model for aligning data with pertinent business processes
- Integration Framework (TNA) — a suite of documents to support the integration of the core frameworks through Architecture Harmonization\(^{22}\)

The depiction of the lifecycle is shown in the respective areas of the quadrants, i.e. in which phases of an improvement lifecycle the respective standards are applicable and how they catalyze each other.

\(^{22}\) https://www.tmforum.org/SolutionFrameworks/1911/home.html
The TM Forum Solution Frameworks can be viewed as blueprints to guide us in progressively moving towards service-orientation over a series of evolutionary phases covered in Figure 7. Their basic structures support service orientation, from the Business Process Framework’s set of highly cohesive, loosely coupled process elements to their companion groups of entities/objects modelled by the Information Framework, to the implementation of the processes by reusable business services (also known as NGOSS Contracts) to a catalogue of services by the Application Framework.23

In the high-level depiction of TAM as seen in Figure 10, the horizontal areas represent typical organizational structures of an operator. We can think of them as people with role descriptions specific for their responsibility within an operator’s value chain along with the IT system that support them in their daily work. These business units can not work in isolation because the products and services provided by the operator require smart collaboration between various different entities.

What differentiates this concept from earlier ones is that in past times the organizational orientation was mostly aligned with the vertical end-to-end processes needed to support customer service represented by underlying vertical areas in Figure 10. These structures were often replicated per product line or access method, further subdivided into special focus, such as provisioning and billing (the silo concept shown earlier).

23 TM Forum Solution Frameworks – GB945M V0.2
24 TM Forum Applications Framework Release 3.0 (GB929)
NGOSS’ goal is to understand and appreciate these dependencies and free up potential synergies by first isolating structures with similar responsibilities and second providing the consolidated interaction framework to put the fragments together in meaningful ways. By liberating all aspects needed for carrier operations NGOSS is sometimes referred to as the “New Telecom Ecosystem.”

Control points within a NGOSS framework

NGOSS provides all features expected of an ecosystem. It contains a vast number of the Telco’s enablers distributed over a large number of systems. While NGOSS is a conceptual model, it shows how architectural changes in the IT landscape make enablers accessible.

Already Telecoms are engaged in projects defining and exposing certain enablers to external parties, thus creating service control points to small portions of their overall capabilities.

This approach is leading in the right direction. However it subdivides the entire NGOSS focus into smaller ecosystems such as one for billing.

If NGOSS is to be seen as an eco-system by itself it should also provide control points, enabling enhanced services through combining existing enablers and service control points as seen in Figure 11. The enablers found in the landscape contain detailed authentication and usage information across networks as well as end-device and history information along with contracts and ability to bill.

The architecture components, allowing combination of eco-systems by consolidation and mashing of their enabler capabilities becomes an ecozone. Ecozone resembles platform logic. It provides the essential required tool set for the development of E2E services. Those E2E services could be also ecosystems from service logic.

26 Telecomtv.com - Vodafone announces revenue sharing and API access for Web developers
In this respect it is important to see the implications both on NGOSS and its supporting landscape as well as on connected entities like the network.

OSSs provide a powerful bridge to the network layer, thus connecting it to the service layer. In the consolidated approach NGOSS needs to be extended to support full control point functionalities to external entities. This control point can be made capable of correlating and intelligently discovering and exposing network and service enablers. The technological SOA base is part of the NGOSS approach the control point enabling platform still needs continued attention.

When pursued in the suggested way, a control point on NGOSS outside edge will provide combined enablers and ready services to be used by individuals or third parties from the outside, enabling the creation of cross access and cross network services.

Ecozone triggered service environment

The old CSP value chain is characterized by single ownership of all the elements that connect, create, and deliver a service.

E2E service and resource provisioning.
Powerful data correlation

The new ecosystems provide unique service aspects and capabilities. No Ecosystem can deliver a full range of services by itself.

Rapid creation, collaboration

The new Ecozone is collaborative. Each entity contributes a unique lightweight capability, and collectively they create a symbiotic system that enables smart sharing of enablers through control points.

Figure 12: Graphic illustrates the ecozone definition and integration of the control point concept

The introduction of NGOSS and the concept of an ecozone, defined in Figure 12, offers the Operator the perspective to provide Operator own services (mashed or unmashed) and to sell CPs to 3rd parties, thus introducing new business opportunities (see Figure 14).

The NGOSS driven ecozone would enhance the provisioning of services, which are available to the user at any time, any device and anywhere (follow me services) and support seamless content super usage “Buy once use everywhere”. These services could be either Operator services, like network centric services or 3rd party services enriched or enabled by the Operator ecozone.
Such a logic including an underlying business process supporting IT landscape would support individual and cross service usage and super interactivity, e.g. blur borders between communities using a network centric address book.

Customers could re-use a ringtone bought from a mobile at the fixed net telephone as well – thus the requested called party is identified at home per ringtone.

Figure 13: Graphic illustrates the possible enhancements of a service ecozone

Mashed services and business models enabled by NGOSS

Example: UICC and Netcentric Addressbook

Besides the ecosystem silos mentioned earlier other silos, e.g. cable companies exist or will develop (see Figure 14).

Most silos today provide a marketplace environment and a community.

Due to the silo structure and logic these concepts limit the consumer freedom and interaction possibilities not only from a technical but mostly from a business regulated perspective. In addition the user needs to remember several login procedures, transactions might work with different interaction logics and in order to be up to date with their friends they need to register at many different communities. Although fist companies arrive on the market to tackle some of these problems\(^\text{27}\), the Operator should tap into this area.

\(^\text{27}\) http://www.8hands.com/
The Universal Integrated Circuit Card (UICC) could be used for authentication purposes thus enabling, e.g. Single Sign On, marketplace transactions …, thus acting as control point.

A network centric address book (NCAB) could enable a whole Operator service suite: People spend much time and waste money trying to call someone but don’t get through.

Using a NCAB where all devices of a called party A are provided, an intelligent communication service (similar to IN concepts) could assure, that a calling party B would reach party A regardless which number / nickname was called, since all devices of party A ring at the same time. Alternatively if the system has the presence information, only the device presently in use by party A rings.

In addition calling rules could be set up once and used for all phones – in the future voice call access points.

In addition a NCAB would allow device independent automatic contact synchronization, enable community intercommunication, use presence information for targeted advertisement and so on. Services which reduce time spent for an action enhance convenience and are simple to use thus raising customer loyalty.
Conclusion
The previous chapters outlined the market pressure on Operators especially driven by new market entrants with flexible services and business logics. Most of these companies use CP or SCP within new ecosystem silos, hence enforcing customer loyalty and reducing revenue from the traditional industry.

Companies with traditional business logics – models are forced to react (see Figure 15).

Introducing an NGOSS based ecozone would provide the technological platform for an Operator to reduce costs, provide a flexible environment in terms of technology – service & business logic, individual services and provide lean structures.

<table>
<thead>
<tr>
<th>Create Ecozone</th>
</tr>
</thead>
<tbody>
<tr>
<td>• To reduce costs</td>
</tr>
<tr>
<td>• To replace existing silo infrastructure</td>
</tr>
<tr>
<td>• To enable mashed service – enabler environment</td>
</tr>
<tr>
<td>• To support different business models</td>
</tr>
<tr>
<td>• To enable individual Follow Me service logic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Develop high quality Service Control Points within core domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enrich own business, e.g. Follow Me services</td>
</tr>
<tr>
<td>• Enable efficient 3rd party business – form alliances around CPs</td>
</tr>
<tr>
<td>• Service production - deployment landscape, billing infrastructure</td>
</tr>
<tr>
<td>• Communication, e.g. network address book, Identity – Single Sign On</td>
</tr>
<tr>
<td>• Create seamless service worlds around core (free) services like voice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Move access driven business model to new business models</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Revenue share: Sale of Ecozone elements – act as business enabler</td>
</tr>
<tr>
<td>• Marketing: Measure and sell usage statistics</td>
</tr>
<tr>
<td>• Advertisement: Provide – use access channels to own / partner customer base</td>
</tr>
</tbody>
</table>

Figure 15: Ecozone provisioning in combination with CP and SCP offer new business model and revenue potential

CP / SCP would enable the Operator to enrich own and partner business. Creation of seamless service worlds using a free service as entrance point, e.g. (NCAB) could leverage usage of secondary services (Google model) providing indirect profit and strengthen customer loyalty.

Finally the combination of high flexible business landscape, CP and seamless service worlds would offer the opportunity for additional business models like advertising, marketing and revenue share.

As seen NGOSS is capable of providing a powerful building block in the Telcos' upcoming challenge and battle for the service market. The service industry has already discovered this and takes active interest in shaping the future of NGOSS. Will the Operators continue to see NGOSS as a cost-saving IT program or will the control-point controlled eco-zone become reality?